
Onions and Spaghetti
Programming Lessons Learnt the Hard Way

Sara Falamaki
CSIRO Networking Technologies Lab

MSC Malaysia Open Source Developers Conference 2009

Onions and Spaghetti

Onions and Spaghetti

• Categorising Code

• Handling Errors and Exceptions

• Global Variables Are Considered Evil

• Unspaghettifying Your Objects

• Controlling Data Flow

• Encapsulation

• Threads are Hard!

Categorising Code

Categorising Code

Three Types of Code:

Categorising Code

Three Types of Code:

1. Model: Your data structures and algorithms.

Categorising Code

Three Types of Code:

1. Model: Your data structures and algorithms.

2. View: The interfaces to the outside world.

Categorising Code

Three Types of Code:

1. Model: Your data structures and algorithms.

2. View: The interfaces to the outside world.

3. Controller: Code that ties the Model to the
View.

Categorising Code

Three Types of Code:

1. Model: Your data structures and algorithms.

2. View: The interfaces to the outside world.

3. Controller: Code that ties the Model to the
View.

Don’t mix them!

Handling Exceptions

Handling Exceptions

Handling Exceptions

• Almost universally handled badly

Handling Exceptions

• Almost universally handled badly

• Only catch it if you can do something about
it

Handling Exceptions

• Almost universally handled badly

• Only catch it if you can do something about
it

• If you can’t deal with it, let it bubble up and
fail. Fail-Fast code is good!

Handling Exceptions

Handling Exceptions

• Don’t hot potato exceptions. Try to deal
with each exception only once.

Handling Exceptions

• Don’t hot potato exceptions. Try to deal
with each exception only once.

Handling Exceptions

Handling Exceptions

• Exceptions can really complicate your
program state when you catch them.

Handling Exceptions

• Exceptions can really complicate your
program state when you catch them.

• If you intend to roll back state, make your
try statements as small as possible.

Handling Exceptions
bool
Checker::isAvailable(){
 try{
 QueryResult result;
 checkQuery = "SELECT * FROM Devices WHERE available";
 _db.query(checkQuery, result);
 if(result.size()==0){
 rescheduleTimer(20);
 return false;
 }
 else{
 rescheduleTimer(100);
 propagateResults(result);
 return true;
 }
 }
 catch(Exception &e){
 cerr << "isAvailable: query failed!";
 return false;
 }
}

Handling Exceptions
bool
Checker::isAvailable(){
 QueryResult result;
 checkQuery = "SELECT * FROM Devices WHERE available";
 try{
 _db.query(checkQuery, result);
 }
 catch(DBTimeoutException &e){
 cerr << "isAvailable: query failed! " << e.what();
 rescheduleTimer(20);
 return false;
 }
 if(result.size()==0){
 rescheduleTimer(20);
 return false;
 }
 else{
 rescheduleTimer(100);
 propagateResults(result);
 return true;
 }

}

Global Variables are
Considered Evil

Global Variables are
Considered Evil

Global Variables are
Considered Evil

• We all learn this in first year, but seem to
forget it too frequently.

Global Variables are
Considered Evil

• We all learn this in first year, but seem to
forget it too frequently.

• Global variables masquerading as member
variables are also Evil!

Why Are Global
Variables Evil?

Why Are Global
Variables Evil?

• They make tracking the program’s state
hard.

Why Are Global
Variables Evil?

• They make tracking the program’s state
hard.

• They make using multiple threads more
dangerous and difficult.

Why Are Global
Variables Evil?

• They make tracking the program’s state
hard.

• They make using multiple threads more
dangerous and difficult.

• They make testing really really hard.

Control Data Flow

Control Data Flow

• Make the flow of data through various areas
of your system as simple as possible.

Control Data Flow

• Make the flow of data through various areas
of your system as simple as possible.

• Try to avoid multi-directional data flow.

Control Data Flow

• Make the flow of data through various areas
of your system as simple as possible.

• Try to avoid multi-directional data flow.

• Think Model-View-Controller when
designing your program.

Original Design

Camera Secondary

Sensors

Matcher

Transport

Events

Original Design

Camera Secondary

Sensors

Matcher

Transport

Events

New Design

CameraSecondary

Sensors Transport

Collator

New Design

CameraSecondary

Sensors Transport

Collator

Unspaghettifying Your
Objects

Unspaghettifying Your
Objects

• Don’t use an object as a namespace and its
members as global variables

• Don’t be afraid of having a library of static
functions that do computation.

Unspaghettifying Your
Objects

Keep your object graphs well trimmed

• Separate your logic from your object
construction

• Avoid constructing new objects in your
object - Use Dependency Injection

Unspaghettifying Your
Objects

Unspaghettifying Your
Objects

Unspaghettifying Your
Objects

• Keep your inheritance graphs well trimmed -
Don’t write Onion Code!

Unspaghettifying Your
Objects

• Keep your inheritance graphs well trimmed -
Don’t write Onion Code!

• Keep your call graphs well trimmed. Don’t
have long chains of function calls.

Encapsulation

Encapsulation

Encapsulation

• Encapsulation is Good

Encapsulation

• Encapsulation is Good

• Excessive Encapsulation is Evil

Encapsulation

• Encapsulation is Good

• Excessive Encapsulation is Evil

• Excessive Encapsulation is Evil

Encapsulation

• Encapsulation is Good

• Excessive Encapsulation is Evil

• Excessive Encapsulation is Evil

• Don’t encapsulate the encapsulated. Don’t
write Onion Code!

Encapsulation
class Door{
 public:
 Door():_handle(Handle()){}

 void open(){
 if(!_handle.locked()){
 _opened = true;
 }
 }

 void close(){
 _opened = false;
 }
 protected:
 bool _opened;
 Handle _handle;
}

Encapsulation

class RedDoor:public Door{
 public:
 RedDoor():_colour("red"){}
 protected:
 string _colour;
}

class RedDoorWithAluminiumHandle: public RedDoor{
 RedDoorWithAluminiumHandle():_colour("red"),_handle(Handle("
aluminium")){}
}

RedDoorWithAluminiumHandle
makeRedDoorWithAluminiumHandle(){
 return RedDoorWithAluminiumHandle();
}

Encapsulation
class Door{
 public:
 Door(string colour, Handle handle):
 _colour(colour), _handle(handle){}
 void open(){
 if(!_handle.locked()){
 _opened = true;
 }
 void close(){
 _opened = false;
 }
 private:
 string _colour;
 Handle _handle;
}

Door
makeRedDoorWithAluminiumHandle(){
 handle = Handle("aluminium");
 return Door("red", handle);
}

Encapsulation

Encapsulation

• Encapsulate logical parts of your code, don’t
encapsulate basic computation or IO.

Encapsulation

• Encapsulate logical parts of your code, don’t
encapsulate basic computation or IO.

• Don’t be afraid to use public member
variables directly

Encapsulation

• Encapsulate logical parts of your code, don’t
encapsulate basic computation or IO.

• Don’t be afraid to use public member
variables directly

• Make your encapsulated objects general
enough to use in different modules

Encapsulation

• Encapsulate logical parts of your code, don’t
encapsulate basic computation or IO.

• Don’t be afraid to use public member
variables directly

• Make your encapsulated objects general
enough to use in different modules

• Composition or Inheritance?

Threads are Hard
“To offer another analogy, a folk definition of
insanity is to do the same thing over and over
again and expect the results to be different.
By this definition, we in fact require that
programmers of multithreaded systems be
insane. Were they sane, they could not
understand their programs.”

-Edward A. Lee

Threads are Hard

Threads are Hard

• If it can be done in one thread, do it in one
thread.

• Keep the multithreaded minority of your
code separate from the single threaded
majority.

• Use message passing rather than shared
memory.

Summary

Summary

• Minimise your state.

Summary

• Minimise your state.

• Make your code as simple as possible but no
simpler.

Summary

• Minimise your state.

• Make your code as simple as possible but no
simpler.

• Control your data flow.

Simplicity is prerequisite for reliability

- Edsger W. Dijkstra

Questions?

More Information

Details of this talk and a copy of the slides
are available at:

http://sara.falamaki.id.au/moin/Writing/
ProgrammingTips

Photo Credits

http://www.flickr.com/photos/23232902@N05/2542353761/ (exception)

http://mine.icanhascheezburger.com/view.aspx?ciid=3900660 (trim)
http://mine.icanhascheezburger.com/view.aspx?ciid=4027009 (hot potato)
http://www.flickr.com/photos/vox/2208835201/sizes/o/ (pipes)
http://icanhascheezburger.com/2008/11/05/funny-pictures-see-it-all-started-with-
a-loose-thread-and-just-went-downhill-from-there/ (threads)
http://www.flickr.com/photos/designedlykristi/122619504/sizes/o/
http://icanhascheezburger.com/2007/06/02/im-in-ur-quantum-box/

http://www.flickr.com/photos/23232902@N05/2542353761/
http://www.flickr.com/photos/23232902@N05/2542353761/
http://mine.icanhascheezburger.com/view.aspx?ciid=3900660
http://mine.icanhascheezburger.com/view.aspx?ciid=3900660
http://mine.icanhascheezburger.com/view.aspx?ciid=4027009
http://mine.icanhascheezburger.com/view.aspx?ciid=4027009
http://www.flickr.com/photos/vox/2208835201/sizes/o/
http://www.flickr.com/photos/vox/2208835201/sizes/o/
http://icanhascheezburger.com/2008/11/05/funny-pictures-see-it-all-started-with-a-loose-thread-and-just-went-downhill-from-there/
http://icanhascheezburger.com/2008/11/05/funny-pictures-see-it-all-started-with-a-loose-thread-and-just-went-downhill-from-there/
http://icanhascheezburger.com/2008/11/05/funny-pictures-see-it-all-started-with-a-loose-thread-and-just-went-downhill-from-there/
http://icanhascheezburger.com/2008/11/05/funny-pictures-see-it-all-started-with-a-loose-thread-and-just-went-downhill-from-there/
http://www.flickr.com/photos/designedlykristi/122619504/sizes/o/
http://www.flickr.com/photos/designedlykristi/122619504/sizes/o/
http://icanhascheezburger.com/2007/06/02/im-in-ur-quantum-box/
http://icanhascheezburger.com/2007/06/02/im-in-ur-quantum-box/

